Synthetic Circuits in Prokaryotes

UE2.1 Biological Parts and Devices

08 October, 2024

Cells can produce useful products and behaviors

Microbial cell factory

(production)

(Keasling JD, 2010. Science)

Differential targeting of Cancer cells

(logic + delivery)

"The Machinery of Life" has many Parts

David S. Goodsell

The Standardised Parts approach of SynBio

Well-characterised biological parts, like parts of a machine, can be re-used in ۲ novel contexts with similar functionality.

Synthetic Biology Open Language (SBOL) standard visual symbols

Parts Registry

Desired behaviours can be picked out of a catalog of Biological Parts.

Anderson promoter library http://parts.igem.org/Part:BBa J23100

Information Transfer Functions

• More detailed quantitative documentation of Part-associated data

The 'datasheet' for genetic parts

<u>Functional Units</u> Transcription: PoPS cell⁻¹ Translation: RibS cell⁻¹

The limits of the Standardised Parts approach (Context Dependence)

- There are limits to the Parts based abstraction of biological function.
- Functions of parts are context dependent!

The Functional Modelling approach

- Contextual effects can alter functions of biological parts.
- Quantitative models that comprehensively describe the biological system could better predict system output.

• The RBS Calculator Biophysical Model can predict Translation Initiation rates using the total binding free energy between the ribosome and the mRNA

RBS TIR= K * $exp(-\beta \Delta G_{total})$

https://salislab.net/software/predict_rbs_calculator

The Functional Modelling approach

- Contextual effects can alter functions of biological parts.
- Quantitative models that comprehensively describe the biological system could better predict system output.

Riboswitch Calculator (Borujeni *et al.*, 2016)

The Functional Modelling approach

• Biophysical modelling of ligand-inducible transcription factors binding to their promoters.

(Chen et al., 2018. Nat Comm)

Information Processing: Digital Logic Gates

	Symbol	Truth	Table
		A	Q
~		0	1
	Inverter or NOT Gate	1	0
	Boolean Expression Q = NOT A or \overline{A}	Read as inversi	on of A gives Q

	Symbol		Truth Table	1
		А	В	Q
	A	0	0	0
0	B Q	0	1	0
	2-input AND Gate	1	0	0
		1	1	1
	Boolean Expression Q = A.B	Read a	as A AND B g	ives Q

https://www.electronics-tutorials.ws/boolean/bool_7.html

Information Processing: Digital Logic Gates

	Symbol		Truth Table	i.
		А	В	Q
	AQ BQ 2-input AND Gate	0	0	0
0		0	1	0
		1	0	0
		1	1	1
	Boolean Expression Q = A.B	Read as A AND B gives Q		

	Symbol	Truth Table		
		А	Q	
-		0	1	
	Inverter or NOT Gate	1	0	
	Boolean Expression Q = NOT A or A	Read as inversi	rsion of A gives Q	

Functionally complete/ Universal gates How?

https://www.electronics-tutorials.ws/boolean/bool_7.html

Engineering a Synthetic Genetic Network: Functional Hierarchy

Information Processing: Digital Logic Gates

Genetic Circuit Design (Chris J. Myers, U. of Utah)

Information Processing: Digital Logic Gates

Genetic Circuit Design (Chris J. Myers, U. of Utah)

Transcription Regulators for Sensing

 Recent work has built strains with 12 different "sensor" modules for transcriptional control

Early Devices: Toggle Switch system

Early Devices: Toggle Switch system

(Gardner et al., 2000. Nature)

Early Devices: Repressilator system

Early Devices: Repressilator system

lite= protein degradation tag See http://parts.igem.org/Protein domains/Degradation

⁽Elowitz et al., 2000. Nature)

Non-TF logic: RNA Logic Gates

• RNA logic gates allow better predictability of design

(Rodrigo & Prakash et al., 2017. NAR)

CRISPRi gates: Protein+RNA regulator

CRISPRi gates: Protein+RNA regulator

(Nielsen et al., 2014. MSB.)

Non-TF logic: Protein Logic Gates

Digital vs Analog Logic in Synthetic Biology

• Is Digital Logic a special case of Analog logic?

A Metabolic Perceptron (Hybrid Logic) Cell-Free System

 Different weights applied using the same enzymes can give us different classification/ logic behaviours

(Pandi & Koch et al., 2019. Nat. Comm.)

A Metabolic Perceptron (Hybrid Logic) Cell-Free System

 Different weights applied using the same enzymes can give us different classification/ logic behaviours

External Wires for circuit control

Multiprotein Genetic Systems: Metabolic Pathways

Activity OD₆₀₀ (% wild-type) 100 0 0.2 1.0

Refactoring Nitrogen Fixation Cluster

Design of Experiments (DoE) approach in Synthetic Biology

- RBS library engineering allows sampling of a large multi-enzyme expression space with limited number of experiments (73 variants)
- A Kinetic model could then be used to extrapolate (28 variants) pathway design

Genetic circuit design automation

Alec A. K. Nielsen,¹ Bryan S. Der,^{1,2} Jonghyeon Shin,¹ Prashant Vaidyanathan,² Vanya Paralanov,³ Elizabeth A. Strychalski,³ David Ross,³ Douglas Densmore,² Christopher A. Voigt¹*

Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits for *Escherichia coli* (880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.

erilog choose \$	Inputs						
1 module Montput out] (sport (s) (s2 (s2))	choose	•	clear				
<pre>1 module (output out, imput ini, inz, ins); always@(ini,inz,in3) 3 begin 4 cane((ini,inz,in3)) 5 3'b000: (outl) = 1'b0; 6 3'b000: (outl) = 1'b0; 7 3'b000: (outl) = 1'b0;</pre>	index	name		low REU	high REU	DNA sequence	
	1	pTac		0.0034	2.8	AACGATCGTTGGCTGTGTTGACAATT	
	2	pTet		0.0013	4.4	TACTCCACCGTTGGCTTTTTTCCCTA	
8 3'b011: {out1} = 1'b0; 9 3'b100: {out1} = 1'b0;	3	3 pBAD		0.0082	2.5	ACTITICATACTCCCGCCATTCAGAG	
12 3 Diff: (Out) = 1 Di; 13 endcase 14 end 15 endmodule	choose	•	clear]			
	index	ndex name DNA se			NA sequence		
	1	YFP		CTGAAGCTGTCACCGGAT		TGTGCTTTCCGGTCTGATGAGTCCGTGAG	
Besign namp Run							

- Youtube (Cello demo): <u>https://www.youtube.com/watch?v=SLn_SkL7vkQ</u>
- <u>http://www.cellocad.org/</u> (Voigt Lab, MIT)
- Youtube (Programming Living Bacteria, by Voigt):
 <u>https://www.youtube.com/watch?v=INttxYdGHs4</u>
- Takes in Verilog specification of circuit design
- Takes more specifications: organism type, gate technology, output type
- Calculates genetic design, using data from previously characterised parts and outputs DNA sequence

• Youtube (Cello demo): https://www.youtube.com/watch?v=SLn_SkL7vkQ

Questions welcome.

manish.kushwaha@inrae.fr