Debugging and Modelling of Genetic Circuits

UE2.1 Biological Parts and Devices

Manish Kushwaha

15 October, 2024

How do circuits break?

How do circuits break?

How do circuits break?

(Brophy & Voigt, 2014. Nat. Methods)

External control over components?

Diversity and Redundancy in Design?

(Farasat et al., 2014. Mol. Sys. Biol.)

Directly visualize the components?

Directly visualize the components?
• Visualise transcribed RNA directly: malachite green stabilization by RNA aptamer

Circuit failures: Under the hood

-
-

(Gorochowski et al., 2017. Mol Sys Biol)

-
-

-
-

What is a model?

What is a model?

-
- **What is a model?**
• Some informative/ conceptual representation of a system
• One or more equations that describe the relationship between different • Some informative/ conceptual representation of a system
• One or more equations that describe the relationship between different components/ properties of the system components/ properties of the system • Some informative/ conceptual representation of a syste
• One or more equations that describe the relationship be
components/ properties of the system
• For example, the Exponential Growth Model:
 $N_{t2} = N_{t1} * (2^{\lambda}g)$ valid representation of a system

describe the relationship between different

ne system

al Growth Model:
 $N_{t2} = N_{t1} * (2^x g)$
 $\mu = \log (N_{t2} / N_{t1}) / (t2 - t1)$
-

 $N_{t2} = N_{t1} * (2^{n}g)$

 $[r = \mu]$

Growth model: boundless or bounded

-
-

https://www.khanacademy.org/science/ap-biology/ecology-ap/population-ecology-ap/a/exponential-logistic-growth

Biological Modelling

https://cbdm.uni-mainz.de/mb18/

Setting up your computer for simple model
• Essential: python
• Useful: jupyter Notebook (local) / Google Collab (cloud)
• Same installation (bals links) Setting up your computer for sin
• Essential: python
• Useful: jupyter Notebook (local) / Google Collab (clon
• Some installation / help links:
• Introduction to Python
https://biocircuits.github.io/appendices/appB_python/ Setting up your computer for simple modelling

-
- **Setting up your complex Setting Setting**
• Essential: python
• Useful: jupyter Notebook (local) / Goo

Some installation / help links:

https://biocircuits.github.io/appendices/appB_python/index.html

• Essential: python
• Useful: jupyter Notebook (local) / Google Collab (cloud)
• Some installation / help links:
• Introduction to Python
https://biocircuits.github.io/appendices/appB_python/index.html
• Python + Jupyter o https://harshityadav95.medium.com/jupyter-notebook-in-windows-subsystem-forlinux-wsl-8b46fdf0a536 • Introduction of help links:
• Introduction to Python
https://biocircuits.github.io/appendices/appB_python/index.html
• Python + Jupyter on Linux WSL in Windows
https://harshityadav95.medium.com/jupyter-notebook-in-window

https://www.youtube.com/watch?v=5pf0_bpNbkw

• Introduction to Python

https://biocircuits.github.io/appendices/appB_python/index.html

• Python + Jupyter on Linux WSL in Windows

https://harshityadav95.medium.com/jupyter-notebook-in-windows-subsystem

linux-wsl-8b46 https://www.freecodecamp.org/news/google-colaboratory-python-code-in-yourgoogle-drive/

https://tinyurl.com/mssb24colab

Expression Modelling

Expression Modelling
• A system of Ordinary Differential Equations (ODEs) to model gene expression
 $\frac{x}{a}$

Production (β) and Degradation (γ) rates

Expression Modelling

Expression Modelling
• A system of Ordinary Differential Equations (ODEs) to model gene expression
 $\frac{x}{a}$

$$
\frac{dx}{dt}=\beta-\gamma x
$$

Production (β) and Degradation (γ) rates

$$
\begin{aligned} \frac{dx}{dt} &= \beta - \gamma x = 0 \\ \Rightarrow x_{\text{ss}} &= \beta/\gamma \end{aligned}
$$

(*y*) rates

(*y*) rates

1, real concentrations of molecules, first-order decay
 • Steady-state concentration can be determined

as a **ratio of production and degradation**

rates as a ratio of production and degradation
 $\gamma = \gamma_{\text{dilution}} + \gamma_{\text{degradation}}$

and concentrations of molecules, first-order decay

Steady-state concentration can be determined

as a ratio of production and degradation

rates rates

ChatGPT: your coding / learning assistant?

ChatGPT: your coding / learning assistant?

Mode

$$
\textsf{plt.grid}(\textsf{True})
$$

plt.show()

$$
\frac{dx}{dt}=\beta-\gamma x
$$

In this code, we first define the ODE function 'ode(x, t)' as 'dx/dt = β - yx'. Then, we use Euler's method to numerically solve the ODE over a specified time span. You can adjust the values of 'beta', 'gamma', the initial condition 'x0', and the time span 't' to suit your specific problem. The code also includes a plot of the solution.

ChatGPT + Google Colab

Transcription-Translation Modelling

Franscription-Translation Modelling
• A system of Ordinary Differential Equations (ODEs) to model transcription and
translation steps translation steps

$$
\frac{dm}{dt} = \beta_m - \gamma_m m
$$

$$
\frac{dx}{dt} = \beta_p m - \gamma_p x
$$

• Steady-state values

$$
\begin{aligned} m_{\rm ss} &= \beta_m/\gamma_m \\ x_{\rm ss} &= \frac{\beta_p m_{\rm ss}}{\gamma_p} = \frac{\beta_p \beta_m}{\gamma_p \gamma_m} \end{aligned}
$$

-
- $\begin{array}{c}\n\beta_m \nearrow \\
\hline\n\text{gene } x\n\end{array}$ $\begin{array}{c}\n\gamma_m m \\
\hline\n\gamma_p \nearrow\n\end{array}$ $m_{ss} = \beta_m / \gamma_m$ $m_{ss} = \beta_p m_{\text{rms}}$ $\frac{\beta_p m_{\text{ms}}}{\gamma_p} = \frac{\beta_p \beta_m}{\gamma_p \gamma_m}$ Steady-state concentration can be determined as a ratio of production and degradation degradation rates $m_{\rm ss} = \frac{\beta_m/\gamma_m}{\gamma_p}$

• Steady-state concentration can be determined as a ratio of product

• Steady-state concentration can be determined as a ratio of product

• Transcription proportionally changes both mRNA and prot
-

Transcription-Translation Modelling

• Time course of mRNA and protein expression

\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n

\n\n\n\nExample

\nExample

Instantaneous concentrations

$$
\frac{dm}{dt}=\beta_m-\gamma_m m
$$

$$
\frac{dx}{dt}=\beta_p m-\gamma_p x
$$

$$
\begin{aligned} m_{\rm ss} &= \beta_m/\gamma_m \\ x_{\rm ss} &= \frac{\beta_p m_{\rm ss}}{\gamma_p} = \frac{\beta_p \beta_m}{\gamma_p \gamma_m} \end{aligned}
$$

Transcription-Translation Modelling

• Time course of mRNA and protein expression

mRNA degradation rate ($γ_m$) changes final steady state and response time

$$
m_{\rm ss} = \beta_m / \gamma_m
$$

$$
x_{\rm ss} = \frac{\beta_p m_{\rm ss}}{\gamma_p} = \frac{\beta_p \beta_m}{\gamma_p \gamma_m}
$$

 $\frac{dm}{dt}=\beta_m-\gamma_m m$

 $\frac{dx}{dt} = \beta_p m - \gamma_p x$

protein degradation rate $(**γ**_p)$ changes final steady state and response time

Figure X	10	
\n β_{pm} \n	\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n	\n β_{pm} \n
\n β_{pm} \n	\n β_{pm} \n	\n γ_{pm} \n
\n β_{pm} \n	\n γ_{pm} \n	\n γ_{pm} \n
\n γ_{pm} \n	\n γ_{pm} \n	\

Instantaneous concentrations

mRNA and protein synthesis rates ($β_m$, $β_o$)) change only final steady state

Regulated Transcription: Repressor

$$
K_{\rm d}=\frac{k_-}{k_+}
$$

(Dissociation constant)

$$
\beta(r)=\beta_0\frac{p}{p_\mathrm{tot}}=\frac{\beta_0}{1+r/K_\mathrm{d}}
$$

- β_0 is the unregulated transcription rate
- Assumes separation of time-scales

Regulated Transcription: Repressor

$$
\beta(R) = \frac{1}{\alpha_0 + \beta_0} \frac{p}{p_{\text{tot}}} = \frac{1}{\alpha_0 + \beta_0} \frac{\beta_0}{1 + r/K_{\text{d}}}
$$

(with leaky transcription)

Regulated Transcription: Repressor

$$
\beta(r)=\;\;\frac{\beta_0}{1+(r/K_{\rm d}\;)^n}
$$

(Hill function kinetics)

Regulated Transcription: Activator

$$
\beta(a) = \beta_0 \frac{p_{\text{bound}}}{p_{\text{tot}}} = \beta_0 \, \frac{a/K_{\text{d}}}{1 + a/K_{\text{d}}}
$$

(Activated expression)

$$
\beta(r) = \beta_0 \frac{p}{p_{\rm tot}} = \frac{\beta_0}{1 + r/K_{\rm d}}
$$

- \cdot β_0 is the unregulated max transcription rate
- Assumes separation of time-scales

Regulated Transcription: Activator

$$
\beta(a)=\,\beta_0\,\frac{(a/K_{\rm d})^{\rm n}}{1\,{+}\!(\!a/K_{\rm d})^{\rm n}}
$$

(Hill function kinetics)

Network Motifs modify circuit behaviour

NFL speeds up response time

-
-

NFL speeds up response time

speeds up response time
$m(t) = m_{ss}$. $(1 - e^{-\gamma_m t})$
$x(t) = x_{ss}$. $(1 - \frac{\gamma_m e^{-\gamma_p t} - \gamma_p e^{-\gamma_m t}}{\gamma_m - \gamma_p})$
Instantaneous concentrations

Instantaneous concentrations

Network Motifs modify circuit behaviour

PFL slows down response time

-
-

Transcription-Translation Modelling with Reaction Mechanism

- In the previous examples the β_m , β_x , γ_m , γ_x are experimentally observed
- Accounting for DNA concentration (CopyN) and leaky transcriptions
- Model-calculated translation rate (β_x))

ODEs

$$
\frac{d[mRNA_{T7RNAP}]}{dt} = \frac{CopyN}{CopyN} \cdot (primingR_{T7RNAP} + R_{T7pT7RNAP}) - \delta_{mRNA} \cdot [mRNA_{T7RNAP}] \tag{1}
$$

$$
\frac{d[T7RNAP]}{dt} = [PR_{TTRNAP} \cdot [mRNA_{TTRNAP}] - \delta_{T7RNAP} \cdot [T7RNAP] \tag{2}
$$

$$
\frac{d[mRNA_{GFP}]}{dt} = \frac{CopyN}{CopyN} \cdot (leakyR_{GFP} + R_{T7prGFP}) - \delta_{mRNA} \cdot [mRNA_{GFP}] \tag{3}
$$

$$
\frac{d[GFP]}{dt} = PR_{GFP}[(mRNA_{GFP}] - \delta_{GFP} [GFP]) \tag{4}
$$

(Kushwaha & Salis, 2015. Nat. Comm.)

Expression Modelling: Repressilator

$$
\frac{\mathrm{d}x_3}{\mathrm{d}t} = \frac{\beta}{1 + (x_2/k)^n} - \gamma x_3
$$

Elowitz: https://biocircuits.github.io/chapters/09_repressilator.html

Expression Modelling: Repressilator

Elowitz: https://biocircuits.github.io/chapters/09_repressilator.html

TinkerCell

FinkerCell
• A visual modelling tool for computer aided design of genetic circuits
<u>http://tinker-cell.blogspot.com/</u> http://tinker-cell.blogspot.com/

http://www.tinkercell.com/ (Chandran et al., 2009. J Biol Eng)

TinkerCell

FinkerCell
• A visual modelling tool for computer aided design of genetic circuits
<u>http://tinker-cell.blogspot.com/</u> http://tinker-cell.blogspot.com/

TinkerCell

FinkerCell
• A visual modelling tool for computer aided design of genetic circuits
<u>http://tinker-cell.blogspot.com/</u> http://tinker-cell.blogspot.com/

http://www.tinkercell.com/ (Chandran et al., 2009. J Biol Eng)

How many Fitted Parameters?

How many Fitted Parameters?

Fitting too many parameters may result in less useful models $(R²$ notwithstanding)

How many Fitted Parameters?

How many Fitted Parameters?
• Fitting too many parameters can result in less useful models
"with four parameters I can fit an elephant, and with five I can make him wig Mow many Fitted Parameters?
• Fitting too many parameters can result in less useful models
"with four parameters I can fit an elephant, and with five I can make him wiggle
his trunk." John von Neumann
(as narrated by Enric **How many Fitted Parameters**
• Fitting too many parameters can result in less useful mode
"with four parameters I can fit an elephant, and with five
his trunk." -John von Neumann
(as narrated by Enrico Fermi in Dyson 2004,

(as narrated by Enrico Fermi in Dyson 2004, Nature v427, p297)

(Mayer et al., 2010. American Journal of Physics v78, p648)

How detailed does a model have to be?

• A model may be useful even if it does a model have to be?
• A model may be useful even if it does not represent all the details of the system
"All models are wrong, but some are useful."

"All models are wrong, but some are useful."

-George Box (1979), "Robustness in the strategy of scientific model building"

How detailed does a model have to be?
• A model may be useful even if it does not represent all the details of the system
"All models are wrong, but some are useful."
-George Box (1979), "Robustness in the strategy of sc Fact A model may be useful even if it does not represent all the details of the system

"All models are wrong, but some are useful."

-George Box (1979), "Robustness in the strategy of scientific model building"

"Now it w Framewold may be useful even if it does not represent all the details of the system

"All models are wrong, but some are useful."

-George Box (1979), "Robustness in the strategy of scientific model building"

"Now it woul Example, the law PV = RT relating pressure P, volume V and temperature Since $\frac{1}{2}$ relating provides a useful."

"Now it would be very remarkable if any system existing in the real world could be

"Now it would be ver "All models are wrong, but some are useful."

"George Box (1979), "Robustness in the strategy of scientific model building"

"Now it would be very remarkable if any system existing in the real world could be

exactly repr From the structure and the strategy of scientific model building"

"Now it would be very remarkable if any system existing in the real world could be

exactly represented by any simple model. However, cunningly chosen

pa -George Box (1979), "Robustness in the strategy of scientific model building"

"Now it would be very remarkable if any system existing in the real world could be

exactly represented by any simple model. However, cunningl "Now it would be very remarkable if any system existing in the real world could be exactly represented by any simple model. However, cunningly chosen parsimonious models often do provide remarkably useful approximations. truth" the answer must be "No". The only question of interest is "Is the model illuminating and useful?"."

Circuit Modelling and Finding Parameters from Literature **Circuit Modelling and Finding Parameters from Lit
Resources
• Biological Circuit Design <u>https://biocircuits.github.io/index.html</u>**

Resources

• Biological Circuit Design <u>https://biocircuits.github.io/index.html</u>
• BioModels Parameters: <u>https://www.ebi.ac.uk/biomodels/parameterSearch</u> (Glont *et al.*, 2020. Bioinformatics.) et al., 2020. Bioinformatics.)

• https://bionumbers.hms.harvard.edu/search.aspx

Questions welcome.

manish.kushwaha@inrae.fr